
T E M P E R A T U R E  W A V E S  IN A C Y L I N D E R  
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We have derived the formulas  for  the determination of the rate of t empera ture -wave  pro-  
pagation and for  the propagation of a heat-flow wave in a uniform isotropic cylinder. We 
prove that these ra tes  vary.  

The solution of the differential  equation 

ot (r, T) [ O~t (r, i) 1 Ot (r, T) ] 
-- ct -+. , 

O~ [ Or ~ r Or J 
O ~ r ~ R ,  �9 >t0 (1) 

for the boundary conditions 

Ot(r, z) ] = O, (2) 
Or r~O 

t (R, x) = t (R)exp icox (3) 

has the following form:  

t (r, ~) = t (O) Io ( r i / f  ~i~-~ ) exp ir (4) 

Having determined the amplitude of the tempera ture  wave at the axis of the cylinder,  after t r an s fo rma-  
tion, we can present  the instantaneous values for the t empera tu re  and the heat flow by means of the follow- 
ing formulas :  

t (r, T) = t (R) - -  
 o(rV%) s j -  

(5) 

(6) 

where,  in general  form, 

M~ (z)= ]/ber~z + bei~z , (7) 

O~ (z) = arctg ---,bei~ z (8) 
ber~ z 

I~ (z) = i TM (ber n z -k i bei~ z), n = 1, 2 . . .  (9) 

The moduli of (5) and (6), respect ively,  determine the real  amplitude of the t empera tu re  wave and the 
real  amplitude of the heat flow. The arguments  of these expressions determine the phase shift, and the dif- 
ference between the arguments  of express ions  (6) and (5) determines  the mutual phase shift of these waves, 

i.e., 
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Fig. 1. Relat ive  ra te  for  the 
t e m p e r a t u r e  and heat - f low 
waves .  

a rg[q( r , -O]- -a rg[ t ( r ,  z)] =Oi(r V/- ma )--Oo(r ~//-~-)----  

since 

( lO)  
4 '  

l i r a  [o~ t z ) -  o,~_,(z)] - ~ (11 )  

3 
lira [0,~ (z) - -  O~ 1 (z)] = ~ -  n. (12) 
Z ---~0 '~ 

It follows f r o m  (10) that the heat - f low wave p recedes  the phase  
of the t e m p e r a t u r e  wave by 1/8 of a period for  r4w/a ~o  and by 1/4 
of a per iod for  r ~ - - 0 .  

The max imum values  in (5) and (6) a re  found for  a rguments  equal 
to zero .  Equating the a rguments  to zero ,  f r o m  these  equations we find 
the value of the t ime  r; then a f te r  calculat ing the der iva t ive  with r e -  
spect  to the va r i ab le  x and applying the t h e o r e m  of the inverse- func t ion  
der iva t ive ,  we der ive  the fo rmu la s  by means  of which we, r espec t ive ly ,  
de t e rmine  the r a t e s  of t e m p e r a t u r e - w a v e  and heat - f low wave p ropaga -  
tion. Since 

dO,. (z) M,~ ~ (z) [ ~ J - ~- - c o s  o~  (z) - -  0~_, (z)  - T ' ( 1 3 )  
dz M~ (z) 

M ~  (z) = M~ (z), (14) 

these  fo rmulas  can be wri t ten  as follows: 

cosec [ O~ (r ] / - - ~ - - )  - -  0o (r V ~ - )  - -  + 1, 

[o, c V )-oo (r 

(15) 

(16) 

Since 

lira M0(z) _ l, 
�9 - -  M i  (z) 

if we cons ider  (11), we find the following solution as  r ~ - - ~ .  

(17) 

at = wq = Y-2-a-~. (18) 

Consequently,  the r a t e s  of propagat ion  for  the t e m p e r a t u r e  and hea t - f low waves  tend toward a value 
co r respond ing  to propagat ion in a ha l f - space .  

F igu re  1 shows the re la t ive  r a t e s  of propagat ion  fo r  t h e s e w a v e s ,  i .e. ,  the r a t e  of wave propagat ion  in 
a cyl inder  (15) and (16) as a r a t io  of the r a t e  of propagat ion for  these  waves  in a h a l f - s p a c e  (18). 

N O T A T I O N  

t is the t empe ra tu r e ;  
a is the coefficient  of t h e r m a l  diffusivity; 
r is the cyl indr ica l  coordinate;  
r is the t ime;  
R is the cyl inder  radius;  
i is an imag ina ry  unit; 
co is the angular  frequency; 
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X 
q 

n 

z 

bernz,beinz 
W 

is the thermal conductivity; 

is the heat flow; 
is a natural number; 

is the general notation for the variable; 

are Thomson functions of order n; 

is the velocity. 
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